Category: CBDs

How Cannabis Oil (CBD) Kills Cancer

cureyourowncancer.org

How CBD Works

How CBD works in the body and brain

Originally published in O’Shaughnessy’s.

Cannbidiol (CBD), a non-psychoactive component of the marijuana plant, has generated significant interest among scientists and physicians in recent years—but how CBD exerts its therapeutic impact on a molecular level is still being sorted out. Cannabidiol is a pleiotropic drug in that it produces many effects through multiple molecular pathways. CBD acts through various receptor-independent channels and by binding with a number of non-cannabinoid receptors and ion channels.

Here are some of the ways that CBD confers its therapeutic effects.

CBD and FAAH

Unlike psychoactive THC, CBD has little binding affinity to either the CB1 or CB2 cannabinoid receptors. Instead, CBD indirectly stimulates endogenous cannabinoid signaling by suppressing the enzyme fatty acid amide hydroxylase (FAAH)—the enzyme that breaks down anandamide, the first endocannabinoid discovered in the mammalian brain in 1992.

Whereas the cannabinoid molecules found in cannabis are considered “exogenous ligands” to the cannabinoid (CB) receptor family, anandamide is an “endogenous” cannabinoid ligand—meaning it binds to one or more cannabinoid receptors and is found naturally inside the mammalian brain and body. Anandamide favors the CB1 receptor, which is concentrated in the brain and central nervous system. Because FAAH is involved in the metabolic breakdown of anandamide, less FAAH means more anandamide remains present in the body for a longer duration. More anandamide means greater CB1 activation.

CBD enhances endocannabinoid tone by supressing FAAH.

By inhibiting the enzyme that metabolizes and degrades anandamide, CBD enhances the body’s innate protective endocannabinoid response. At the same time, CBD opposes the action of THC at the CB1 receptor, thereby muting the psychoactive effects of THC.

CBD also stimulates the release of 2-AG, another endocannabinoid that activates both CB1 and CB2 receptor. CB2 receptors are predominant in the peripheral nervous system and the immune system.

The Vanilloid Receptor

While CBD has little binding affinity for either of the two cannabinoid receptors, it has been shown to directly interact with other “G-protein-coupled” receptors and ion channels to confer a therapeutic effect. CBD, for example, binds to the TRPV-1 receptor, which is known to mediate pain perception, inflammation and body temperature.

TRPV is the technical abbreviation for “transient receptor potential cation channel subfamily V.” There are several dozen TRP receptor variants or subfamilies that mediate the effects of a wide range of medicinal herbs.

Scientists also refer to TRPV-1 as the “vanilloid receptor,” named after the flavorful vanilla bean. Vanilla contains eugenol, an essential oil that has antiseptic and analgesic properties; it also helps to unclog blood vessels. Historically, the vanilla bean has been used as a folk cure for headaches.

CBD is a TRPV-1 “agonist” or stimulant. This is likely one of the reasons why CBD-rich cannabis is an effective treatment for neuropathic pain.

Capsaicin—the pungent compound in hot chili peppers—activates the TRVP-1 receptor. Anandamide, the endogenous cannabinoid, is also a TRPV-1 agonist.

The Serotonin Receptor

Jose Alexandre Crippa and his colleagues at the University of San Paulo in Brazil and at the King’s College in London have conducted pioneering research into CBD and the neural correlates of anxiety.

At high concentrations, CBD directly activates the 5-HT1A (hydroxytryptamine) serotonin receptor, thereby conferring an anti-depressant effect. This receptor is implicated in a range of biological and neurological processes, including (but not limited to) anxiety, addiction, appetite, sleep, pain perception, nausea and vomiting.

5-HT1A is a member of the family of 5-HT receptors, which are activated by the neurotransmitter serotonin. Found in both the central and peripheral nervous systems, 5-HT receptors trigger various intracellular cascades of chemical messages to produce either an excitatory or inhibitory response, depending on the chemical context of the message.

CBD triggers an inhibitory response that slows down 5-HT1A signaling. In comparison, LSD, mescaline, magic mushrooms, and several other hallucinogenic drugs activate a different type of 5-HT receptor that produces an excitatory response.

The Adenosine Receptor

CBD’s anxiolytic (anti-anxiety) properties may in part be attributable to its activation of the adenosine receptor. Adenosine receptors play significant roles in cardiovascular function, regulating myocardial oxygen consumption and coronary blood flow. The adenosine (A2A) receptor has broad anti-inflammatory effects throughout the body.

Adenosine receptors also play a significant role in the brain. They down-regulate the release of other neurotransmitters such as dopamine and glutamate.

GPR55

Whereas cannabidiol activates the TRPV-1 vanilloid receptor, the A2A adenosine receptor, and the 5-HT1A serotonin receptor, some studies indicate that CBD functions as an antagonist that blocks, or deactivates, another G protein-coupled receptor known as GPR55.

GPR55 has been dubbed an “orphan receptor” because scientists are still not sure if it belongs to a larger family of receptors.

GPR55 is widely expressed in the brain, especially in the cerebellum. It is involved in modulating blood pressure and bone density, among other physiological processes.

GPR55 promotes osteoclast cell function, which facilitates bone reabsorption. Overactive GPR55 receptor signaling is associated with osteoporosis.

GPR55, when activated, also promotes cancer cell proliferation, according to 2010 study by researchers at the Chinese Academy of Sciences in Shanghai. This receptor is expressed in various types of cancer.

CBD is a GPR55 antagonist, as University of Aberdeen scientist Ruth Ross disclosed at the 2010 conference of the International Cannabinoid Research Society in Lund, Sweden.

By blocking GPR55 signaling, CBD may act to decrease both bone reabsorption and cancer cell proliferation.

PPARs

CBD also exerts an anti-cancer effect by activating PPARs [peroxisome proliferator activated receptors] that are situated on the surface of the cell’s nucleus. Activation of the receptor known as PPAR-gamma has an anti-proliferative effect as well as an ability to induce tumor regression in human lung cancer cell lines.

PPAR-gamma activation degrades amyloid-beta plaque, a key molecule linked to the development of Alzheimer’s disease. This is one of the reasons why cannabidiol, a PPAR-gamma agonist, may be a useful remedy for Alzheimer’s patients.

PPAR receptors also regulate genes that are involved in energy homeostasis, lipid uptake, insulin sensitivity, and other metabolic functions. Diabetics, accordingly, may benefit from a CBD-rich treatment regimen.

CBD’s enzyme-mediated activation of the PPAR-alpha receptor may have antipsychotic effects. Polymorphisms or mutations in the gene encoding PPAR-alpha can result in deficient PPAR-alpha signaling, which has been linked to schizophrenia. PPAR-alpha activation is both anti-inflammatory and can decrease dopamine release, thereby minimizing schizophrenic symptoms.

American Cancer Society on Cannabinoids

Marijuana and Cancer

medical-marijuana-card-main_full-300x291[1]

Quoted from: http://www.cancer.org/treatment/treatmentsandsideeffects/physicalsideeffects/chemotherapyeffects/marijuana-and-cancer

Marijuana is the name given to the dried buds and leaves of varieties of the Cannabis sativa plant, which can grow wild in warm and tropical climates throughout the world and be cultivated commercially. It goes by many names, including pot, grass, cannabis, weed, hemp, hash, marihuana, ganja, and dozens of others.

Marijuana has been used in herbal remedies for centuries. Scientists have identified many biologically active components in marijuana. These are called cannabinoids. The two best studied components are the chemicals delta-9-tetrahydrocannabinol (often referred to as THC), and cannabidiol (CBD). Other cannabinoids are being studied.

At this time, the US Drug Enforcement Administration lists marijuana and its cannabinoids as Schedule I controlled substances. This means that they cannot legally be prescribed, possessed, or sold under federal law. Whole or crude marijuana (including marijuana oil or hemp oil) is not approved by the US Food and Drug Administration (FDA) for any medical use. But the use of marijuana to treat some medical conditions is legal under state laws in many states.

Dronabinol, a pharmaceutical form of THC, and a man-made cannabinoid drug called nabilone are approved by the FDA to treat some conditions.

Marijuana

Different compounds in marijuana have different actions in the human body. For example, delta-9-tetrahydrocannabinol (THC) seems to cause the “high” reported by consumers of marijuana, and also can help relievepain and nausea, reduce inflammation, and can act as an antioxidant. It can also lead to feelings of anxiety and paranoia. Cannabidiol (CBD) can help treat seizures, can reduce anxiety and paranoia, and can counteract the “high” caused by THC.

Different cultivars (strains or types) and even different crops of marijuana plants can have varying amounts of these and other active compounds. This means that marijuana can have different effects based on the strain used.

The effects of marijuana also vary depending on how marijuana compounds enter the body.

When taken by mouth, the THC is absorbed poorly and can take hours to be absorbed. Once it’s absorbed, it’s processed by the liver, which produces a second psychoactive compound (a substance that acts on the brain and changes mood or consciousness) that affects the brain differently than THC.

When marijuana is smoked or vaporized (inhaled), THC enters the bloodstream and goes to the brain quickly. The second psychoactive compound is produced in small amounts, and so has less effect. The effects of inhaled marijuana fade faster than marijuana taken by mouth.

How can marijuana affect symptoms of cancer?

A number of small studies of smoked marijuana found that it can be helpful in treating nausea and vomiting fromcancer chemotherapy.

A few studies have found that inhaled (smoked or vaporized) marijuana can be helpful treatment of neuropathic pain(pain caused by damaged nerves).

Smoked marijuana has also helped improve food intake in HIV patients in studies.

There are no studies in people of the effects of marijuana oil or hemp oil.

Studies have long shown that people who took marijuana extracts in clinical trials tended to need less pain medicine.

More recently, scientists reported that THC and other cannabinoids such as CBD slow growth and/or cause death in certain types of cancer cells growing in laboratory dishes. Some animal studies also suggest certain cannabinoids may slow growth and reduce spread of some forms of cancer.

There have been some early clinical trials of cannabinoids in treating cancer in humans and more studies are planned. While the studies so far have shown that cannabinoids can be safe in treating cancer, they do not show that they help control or cure the disease.

Relying on marijuana alone as treatment while avoiding or delaying conventional medical care for cancer may have serious health consequences.

Cannabinoid drugs

There are 2 chemically pure drugs based on marijuana compounds that have been approved in the US for medical use.

Dronabinol (Marinol®) is a gelatin capsule containing delta-9-tetrahydrocannabinol (THC) that’s approved by the US Food and Drug Administration (FDA) to treat nausea and vomiting caused by cancer chemotherapy as well as weight loss and poor appetite in patients with AIDS.

Nabilone (Cesamet®) is a synthetic cannabinoid that acts much like THC. It can be taken by mouth to treat nausea and vomiting caused by cancer chemotherapy when other drugs have not worked.

Nabiximols is a cannabinoid drug still under study in the US. It’s a mouth spray made up of a whole-plant extract with THC and cannabidiol (CBD) in an almost one to one mix. It’s available in Canada and parts of Europe to treat pain linked to cancer, as well as muscle spasms and pain from multiple sclerosis (MS). It’s not approved in the US as of 2015, but it’s being tested in clinical trials to see if it can help a number of conditions.

How can cannabinoid drugs affect symptoms of cancer?

Based on a number of studies, dronabinol can be helpful for reducing nausea and vomiting linked to chemotherapy.

Dronabinol has also been found to help improve food intake and prevent weight loss in patients with HIV. In studies of cancer patients, though, it wasn’t better than placebo or another drug (megestrol acetate).

Nabiximols has shown promise for helping people with cancer pain that’s unrelieved by strong pain medicines, but it hasn’t been found to be helpful in every study done. Research is still being done on this drug.

Side effects of cannabinoid drugs

Like many other drugs, the prescription cannabinoids, dronabinol and nabilone, can cause side effects and complications.

Some people have trouble with increased heart rate, decreased blood pressure (especially when standing up), dizziness or lightheadedness, and fainting. These drugs can cause drowsiness as well as mood changes or a feeling of being “high” that some people find uncomfortable. They can also worsen depression, mania, or other mental illness. Some patients taking nabilone in studies reported hallucinations. The drugs may increase some effects of sedatives, sleeping pills, or alcohol, such as sleepiness and poor coordination. Patients have also reported problems with dry mouth and trouble with recent memory.

Older patients may have more problems with side effects and are usually started on lower doses.

People who have had emotional illnesses, paranoia, or hallucinations may find their symptoms are worse when taking cannabinoid drugs.

Talk to your doctor about what you should expect when taking one of these drugs. It’s a good idea to have someone with you when you first start taking one of these drugs and after any dose changes.

What does the American Cancer Society say about the use of marijuana in people with cancer?

The American Cancer Society supports the need for more scientific research on cannabinoids for cancer patients, and recognizes the need for better and more effective therapies that can overcome the often debilitating side effects of cancer and its treatment. The Society also believes that the classification of marijuana as a Schedule I controlled substance by the US Drug Enforcement Administration imposes numerous conditions on researchers and deters scientific study of cannabinoids. Federal officials should examine options consistent with federal law for enabling more scientific study on marijuana.

Medical decisions about pain and symptom management should be made between the patient and his or her doctor, balancing evidence of benefit and harm to the patient, the patient’s preferences and values, and any laws and regulations that may apply.